Classification and Taxonomy

the grouping of objects or organisms based on a set of criteria

Early Classification Ideas

- 1. Aristotle (394 322 B.C.)
 - classified organisms as either animals or plants
 - Animals were classified according to the presence of red blood

red blood present = vertebrate red blood absent = invertebrate

- Animals were further grouped according to habit and morphology
- Plants were classified by average size (tree, shrub, herb)

Flaws

- based on his view that species are distinct and unchanging
- his views did not look at evolutionary relationships
- some organisms did not fit into a category of Aristotle's

Plants		
Herbs	Shrubs	Trees
violets	blackberry bush	apple
rosemary	honeysuckle	oak
onions	flanelbush	maple
Animals		
Land	Water	Air
wolf	dolphin	owl
cat	eel	bat
bear	sea bass	crow

Taxonomic Categories

Taxon - a named group of organisms

- based on characteristics
- the broader the characteristics, the larger the taxa
- the more specific the characteristics, the small the taxa

Species - a group of organisms that can interbreed and produce fertile offspring

Genus - a group of species that are closely related and share a common

Family - the next higher taxa consisting of similar or related genera (genus)

Order - contains related families

Class - contains related orders

Phylum - contains related classes Kingdom - contains related phylum

<u>Domain</u> - the broadest of all taxa and contains one or more kingdom

King Phil Came Over From Geneva Switzerland

Kings Play Chess On Fine Glass Stools

- 2. Carolus Linnaeus (1707-1778)
 - based his system on observational studies of the morphology and the behavior of the organisms 4 deadh
 - ex. grouped birds into 3 groups depending on their behavior and habitat

 - 1. eagle bird of prey 2. heron wading bird
 - 3. cedar waxwing perching birds
 - First formal system of Taxonomy

discipline of biology that deals with identifying, naming, and classifying species based on natural relationships

- Rinomial Nomenclature
 - Linnaeus's method of naming organisms
 - Each species has a scientific name that is 2 parts

Part 1 ---- Genus Homb Part 2 ----- Species Sapen

- Use scientific names because common name vary in their use
- Use scientific names because common name can be misleading

How to write scientific name

- Write the <u>genus first</u>. The <u>first letter</u> of the genus is capital and the rest of the letters in the genus are lower case
- 2. Write the species next. ALL letters of the species name are lower
- 3. If the name is written by hand, both names need to be underlined or italicized
- 4. The genus may or may not be shortened to just one letter
 - ex. <u>Homo sapien</u> or *Homo sapien* or *H. sapien*
- 3. Modern Classification morphological and behavioral characteristics but also evolutionary relationships in their classification

Modern Classification

Typological Species Concept

- Classification is determined by the comparison of physical characteristics with a type of specimen
- Based on the idea that species are unchanging, distinct, and natural

Limitations - alleles produce a wide variety of features within a

Benefits - descriptions of type specimens provide detailed records of the physical characteristics of many organisms

Biological Species Concept

- Classification is determined by similar characteristics and the ability to interbreed and produce fertile offspring

Limitations - 1) some organisms such as wolves and dogs that are different species interbreed occasionally

2) It does not account for extinct species

Benefits - The working definition applies in most cases, so it is still used

Phylogenetic Species Concept

- Classification is determined by evolutionary history
- Phylogeny the evolutionary history of a species
 - a species is a cluster of organisms that is distinct from other clusters and show evidence of a pattern of ancestry and descent

Limitations - Evolutionary histories are not known for all species

Benefits - Accounts for extinct species and considers molecular data

Characters

- inherited features that vary among species
- can be morphological or biochemical

Morphological Characters

- shared morphological characters suggest that species are related closely and evolved from a recent common ancestor
 - ex. hawks and eagles (keen eyesight, talons, hooked beaks)
- Analogous characters DO NOT indicate close evolutionary relationship
 - ex. sparrows and oviraptors

Morphological Similarities

- Birds have hollow bones and oviraptors have bones with hollow spaces in them
- Oviraptors have hip, leg, wrist, and shoulder structures that are more similar to birds than other reptiles
- Some fossils suggest that oviraptors had feathers

Biochemical Characters

- amino acid sequences, nucleotides, chromosome structure and number
 - ex. broccoli, cauliflower, cabbage, kale have almost identical chromosome structures

- the greater number of shared DNA sequences between species, the greater number of shared genes --- the greater the evidence that the species share a common ancestor
- find genomes of organisms

Phylogenetic Reconstruction

- Cladistics a method that classifies organisms according to the order that they diverged from a common ancestor
 - it reconstructs phylogenies based on shared characteristics

- Cladogram -

- 2 Main Character Types
 - 1) an ancestral character is found within the entire line of decent of a
 - 2) derived characters are present in members of one group of the line but not in the common ancestor

-> only some home it

ex. birds and mammals reptiles, fish, and bears

ancestral character = Seckbore

derived character = wings, lungs, webbed feet

Domains

3 Main Domains

1) Bacteria 2) Archaea 3) Eukarya

6 Kingdoms

1) Eubacteria 2) Archaea 3) Protists 4) Fungi 5) Plantae 6) Animalia

Domain Bacteria

Domain = Bacteria Kingdom = Eubacteria

- prokaryotes whose cell walls contain peptidoglycan
- unicellular
- can survive in many environments

Domain Archaea

Domain = archaea Kingdom = archaea

- cell walls do not contain peptidoglycan
- have some of the same proteins as eukaryotes
- unicellular
- can live in extreme environments (hot springs, salty lakes, thermal vents)

Domain Eukarya

Domain = Eukarya

Kingdoms = protista, fungi, plantae, animalia

- eukaryotic organisms

Protista - protists

- cell walls with cellulose in some
- ≼ unicellular, multicellular, or colonial
 - autotrophs or heterotrophs

Fungi - fungus www.s

- multicellular
- absorb nutrients from organic materials in its environment
- heterotrophs
- lack mobility
- cell walls contain chitin

Plantae - Plants

- more than 250,000 species of plant
- multicellular
- cell walls composed of cellulose
- most contain chloroplasts for photosynthesis
- autotrophs

Animalia - Animals

- multicellular
- heterotrophic
- do not have cell walls
- cells → tissues → organ → organ system
- wide range of sizes
- can live in land, water, or air